Twenty-five years of sprawl in the Seattle region: growth management responses and implications for conservation

Lin Robinson,*, Joshua P. Newell, John M. Marzluff

a College of Forest Resources, Anderson Hall, P.O. Box 352100, University of Washington, Seattle, WA 98195-2100, USA
b Department of Geography, University of Washington, Seattle, WA 98195, USA

Received 26 November 2002; received in revised form 7 September 2003; accepted 16 February 2004

Abstract

To study the effects of growth management efforts on urban fringe areas in Washington State's Puget Sound region, USA, this study documents and quantifies transformations in land cover and land-use from 1974 to 1998 for a 474 km² study area east of Seattle. Geo-referenced aerial photographs (orthophotos) were digitized, then classified, to compare patch patterns (clustered versus dispersed vegetation, remnant versus planted vegetation), size, development type (single-family housing, multi-family housing, commercial) and percent vegetative cover between 1974 and 1998 images. Changes in interior forest habitat and amount of edge were also calculated. The study showed that suburban and exurban landscapes increased dramatically between 1974 and 1998 at the expense of rural and wildland areas. Settled lands became more contiguous while rural and wildland areas became more fragmented. Interior forest habitat in wildland areas decreased by 41%. Single-family housing was the primary cause of land conversion. Current growth management efforts prioritize increasing housing density within urban growth boundaries (UGBs), while limiting densities outside these boundaries. The study demonstrated that housing density has increased within these boundaries, but at the same time, sprawling low-density housing in rural and wildland areas constituted 72% of total land developed within the study area. Therefore, policies to reduce the density of settlement outside urban centers, in part to protect ecological systems, may have unintended environmental consequences. This has implications for those urban areas, both in the United States and in other countries, considering growth management strategies.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Edge; Forest conversion; Growth management policy; Habitat fragmentation; Landscape patterns; Low-density housing; Sprawl; Urban growth boundaries

1. Introduction

“Sprawl” is a relatively new pattern of human settlement characterized by a haphazard patchwork of low-density housing and commercial strip development created by and dependent on extensive automobile use (Ewing, 1997; Gillham, 2002). Sprawl typically moves away from existing settlement in a “leap-frog” pattern, as widely spaced developments initially occur several kilometers from the central business district and later become connected by infill development. In the early 20th century, urban populations in the United States were concentrated within cities, but by the 1960s, this pattern began to change. During the 1970s and 1980s, more than 95% of US population growth took place in suburban areas outside cities (Gillham, 2002). Today, in the US, more people live and work in suburbs than in cities. As a result, sprawl has emerged as the...
dominant development pattern throughout much of the US.

The scattered, low-density development characteristic of sprawl occupies far more land than does multi-storied and higher-density urban centers (Bullard et al., 2000), and has significant effects on the land and its resources. Consequently, the area covered by urban and suburban growth often increases faster than population growth. For example, in the Chicago metropolitan area, while the population grew by 38% from 1950 to 1990, developed land increased 124% (O’Meara, 1999). Sprawl has also been shown to have significantly higher economic and social costs than more compact developments, particularly with regard to transportation and other infrastructure costs (Benfield et al., 1999).

In the US, sprawl is converting forests, agricultural land, and wetlands into built environments beyond the edges of urbanizing areas (the “urban fringe”) at an alarming and increasing pace (Gillham, 2002). Sprawl affects water supply, wildlife, habitat availability, and overall habitat quality (Matlack, 1993; Zuidema et al., 1996; McDonnell et al., 1997; McKinney, 2002). Sprawl, for example, is responsible for 51% of all wetland loss in the US (US Fish and Wildlife Service, 2000). Sprawl not only consumes natural habitats but also fragments, degrades, and isolates remaining natural areas (Marzluff and Restani, 1999; Marzluff, 2001). The sprawl landscape is unlike the original and is often dominated by non-native plantings. As a result, natural vegetation or protected areas in and adjacent to sprawl settlement may be more susceptible to invasion by non-native species and may quickly become dominated by such species (Zuidema et al., 1996; Cadenasso and Pickett, 2001; Marzluff, 2001).

The impacts of increased urbanization and sprawl development are also apparent in many regions worldwide (Vitousek et al., 1997; Marzluff, 2001; Alberti et al., 2003). Loss of agricultural land due to urban sprawl has been an issue for decades in The Netherlands, caused largely by construction of industrial and commercial facilities in urban fringe areas, as well as the desire for more living space (Valk, 2002)—ostensibly fueled by pursuit of the Dutch version of the “American dream” (Tjallingii, 2000). Urban sprawl is also the dominant feature of urbanization in Japan, particularly within commuting distance of major cities such as Tokyo, Osaka, and Nagoya (Sorensen, 1999). Sprawl is becoming an issue in Russia, although Moscow appears to be the only major metropolitan area affected thus far (Ioffe and Nefedova, 2001, 1998). Residential and recreational use of land around Moscow, primarily due to the construction of second summer homes (“dachas”) and cottages, is leading to loss of commercial agricultural lands (Ioffe and Nefedova, 2001, 1998). The loss of forests, agricultural lands, and open space to urban sprawl is also an issue in Canada (Rothblatt, 1994), the United Kingdom (Breheny, 1995), and Israel (Razin, 1998).

Although there are many areas affected by sprawl, we selected King County, Washington, home to Seattle, as our study area. The population in King County is growing rapidly and is becoming more urban. In just 30 years (1970–2000), the county’s population increased 44%, from 1.2 to 1.7 million, while the number of households increased by 72% (from 400,000 to 680,000; KCORPP, 2000a). This trend is expected to continue. For example, between 1995 and 2015, planners forecast an additional 150,000 households for the region, with a significant proportion of new construction expected along the urban fringe (KCORPP, 2000a). King County is therefore an appropriate site to study the extent and impacts of land conversion at an urban fringe.

Recognition of the costs of sprawl has prompted policy makers throughout the world to create various regulations and incentives to reduce it, including regulatory controls on pattern and density of development, establishing urban growth boundaries (UGBs), restricting new residential development in agricultural areas, establishing greenbelts, pacing new development to match development of new infrastructure, restricting the numbers of new residential permits issued, land preservation programs, and tax incentives (Porter, 1997; Razin, 1998; Tjallingii, 2000; Gillham, 2002). Management programs that attempt to balance growth while fulfilling economic, social, and environmental needs are often termed “smart growth” programs. Such programs may include a combination of the programs listed above or may focus on a single approach (Porter, 1997; Benfield et al., 1999; Gillham, 2002). Washington State, for example, has attempted to deal with the issue of sprawl through
the use of urban growth boundaries established on a county-wide basis (KCORPP, 2000a).

Growth management efforts in King County, Washington, were first initiated by its 1964 comprehensive plan, however, serious efforts to deal with growth management issues began with the 1985 comprehensive plan (KCDPCD, 1985). The 1985 plan attempted to manage new growth while meeting economic needs and providing affordable housing, public facilities, and other services. The 1985 plan called for most new growth to occur in designated “urban” and “transitional” areas. Residential development in “rural” areas was still allowed, but at lower densities. For example, the density of residential development in rural areas was reduced from one dwelling unit per acre (0.4 ha) to 1 dwelling unit per 2.5–10 acres (1–4 ha) by the 1985 comprehensive plan (KCDPCD, 1985; Reitennbach, personal communication). The 1985 plan also established permanent forest and agricultural production districts where very little new residential development was allowed.

In 1990, Washington State promulgated the Growth Management Act (GMA; Chapter 36.70A RCW), which has a primary goal of minimizing land conversion and environmental impacts by concentrating growth in urban areas. Local jurisdictions, such as city and county governments, were required to work together to prepare comprehensive plans that balanced growth, economics, and land-use while providing affordable housing and other public services. Local jurisdictions were also required to designate specific long-term urban growth boundaries, based on population and economic growth projections through the year 2012. In 1992, King County and elected officials from cities within the county collaborated to produce county-wide planning policies, which provided the framework for implementing the goals of the GMA (KCORPP, 2002). That document also established UGBs throughout the county. In 1994, city and county officials produced a new comprehensive plan, which provided the legal framework for making land-use decisions in unincorporated sections of the county and adopted the UGBs set forth in the planning policies (KCORPP, 2001). In compliance with the GMA, local governments within the county also prepared new or revised existing subarea plans to implement county-wide growth management policies at the local level.

Washington’s GMA, as well as King County’s planning documents, all have specific goals and/or policies related to growth management such as encouraging development in urban areas, reducing the “inappropriate conversion of undeveloped land into sprawling, low-density development,” conserving fish and wildlife habitat, and protecting and enhancing the environment (KCDPCD, 1985; KCORPP, 2001). It is not the intent of these plans to prohibit growth outside of urban areas, but instead to direct most new growth to the areas inside the UGBs (KCORPP, 2002).

In King County, this was accomplished primarily by zoning. Urban areas were zoned for higher residential densities (at least 1–12 dwelling units per acre [0.4 ha]), while areas designated as “rural” were zoned for lower residential densities (generally 1 dwelling unit per 2.5–10 acres [1–4 ha]; KCORPP, 2001). In addition, the permanent forest and agriculture production districts established by the 1985 comprehensive plan were continued virtually unchanged in the 1994 plan and were also zoned for very low residential densities (1 dwelling unit per 10–80 acres [4–32 ha]; KCORPP, 2001). Thus, growth management in King County featured a two-pronged approach: urban growth boundaries were used to define the areas where most new growth was desired over a 20 year planning period, and a combination of low-density residential zoning and long-term designation of resource production lands were used to decrease the potential for new growth outside the UGBs.

The landscape-level effects of these growth management programs can be seen on Fig. 1. More than half of the county consists of natural or second growth forests, “protected” from unmanaged growth by designation as forest production areas, parks, open space, or wilderness. The Westernmost section of the county is highly urbanized. Designated rural areas provide a slower-developing transition or buffer zone between the UGBs and protected forest lands.

While these planning measures and others attempt to address the problem of sprawl, scientific research to quantify the specific patterns of sprawl over time has been limited. Truly basic questions are not only unanswered, but unasked. For example, what is the pattern of land conversion? How, specifically, did the landscape change? What are the patch patterns of development and remaining vegetation?
Fig. 1. Land-use and zoning in the study area and vicinity. The Interstate 90 highway runs West–east through the middle of the study area, which is about 15 km East of Seattle. Source: King County, 2002.
Seeking answers to these questions and others, an exploratory study was conducted to document and quantify transformations in land cover and land-use from 1974 to 1998 in a 474 km² section of the urban fringe in the Seattle, WA area (Fig. 1). The objectives of the study were to determine how sprawl has changed landscape composition, vegetative pattern and type of vegetation, primarily from a wildlife conservation perspective. The proximate causes of these changes such as growth management policies and the effects of housing density on wildlife habitat, were also explored.

2. Methods

2.1. Selection of study area

King County is geographically diverse, ranging in elevation from sea level in the west along Puget Sound, to about 2400 m in the Cascade mountains to the East. Urban development dominates the Western third of the county, but becomes less dense as one moves east from the Puget lowlands into the foothills of the Cascades. An area east of Seattle (Fig. 1) that spanned a gradient of landscape types, from suburban centers and less-developed rural/exurban lands to forested wildlands, was selected for study. The 474 km² study area extends 42 km from the Southeastern shores of Lake Sammamish to the town of North Bend. Northern and Southern boundaries are approximately 5 km North and South of interstate 90 (I-90). The study area encompasses cities that have designated UGBs as well as unincorporated land. However, because it includes I-90, the major East–West arterial, more development has occurred within the study area than is typical for most other portions of Eastern King County.

2.2. Development of geographic database

Aerial photography can document the built environment and its temporal changes (Wu and Yeh, 1997). For this study, geo-referenced black and white, summer-scene, aerial photographs (orthophotos) supplied by the Washington Department of Natural Resources (DNR) for 1974 and 1998 were analyzed to develop a digital record of land cover and land-use in the study area. The year 1998 was selected because it was the most recent data available when the project began. The year 1974 was the earliest year available at the same scale as the 1998 photos. Comparable scale photos were essential for precise comparison. However, the 1974 photos, unlike those for 1998, were only available in paper format. Thus, the 1974 orthophotos had to be scanned, then geo-referenced using ERDAS software (ERDAS, 2002), before analysis.

Using ESRI Arc View 3.2 geographic information system (GIS) software, a five-member team manually digitized then classified homogenous patches (i.e. polygons) on each set of orthophotos. To aid in consistency, all polygons were classified based on the characteristics detectable at a scale of 1:14,000. Given the resolution of the orthophotos, 2 ha was considered the smallest consistently mappable unit. Arcview's patch analyst was used to aggregate polygons with similar classifications into patch types for analysis of patch size and calculation of other landscape metrics. GIS data layers provided by King County (King County, 2002) were used to investigate land-uses and growth management policies in the study area.

2.3. Classification of digitized polygons

Digitized polygons were coded for specific land cover and land-use characteristics, and for types and patterns of vegetation, using a classification system developed to meet the specific needs of this study. This information was then used to quantify land conversion and to analyze specific patterns (e.g. clustered versus dispersed vegetation, remnant versus planted vegetation), patch size, development type (e.g. single-family or multi-family housing, commercial/industrial), and habitat type (forested versus non-forested vegetation).

Each polygon was classified based on a hierarchical system (Table 1). First, polygons were viewed in a 1 km² setting to determine the landscape-level context for each polygon. Five categories were used to describe the dominant landscape: urban, suburban, rural, exurban, and wildland. Because of confusion in the literature over their exact meanings (McIntyre et al., 2000; Marzluff et al., 2001), they were explicitly defined for this study (Table 2). A photographic example of the dominant landscapes defined in Table 2 is shown on Fig. 2. Note that no areas within the study area met the definition of “urban” as defined for this
<table>
<thead>
<tr>
<th>Suburban, rural, or exurban</th>
<th>Dominant landscape (level 1)</th>
<th>Wildland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant land cover or land-use (level 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare soil</td>
<td>Unpaved gravel roads, or unpaved gravel lots</td>
<td>Unpaved gravel roads, or Unpaved gravel lots</td>
</tr>
<tr>
<td>Paved</td>
<td>Multi-lane/interstate road, or paved road, or paved lot</td>
<td>Multi-lane/interstate road, or paved road, or paved lot</td>
</tr>
<tr>
<td>Unknown development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1974 only. No subcategories)</td>
<td>(1974 only. No subcategories)</td>
<td></td>
</tr>
<tr>
<td>Single-family residential, or multi-family residential, or commercial/industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td><25% vegetation coverage, or 25-75% vegetation coverage, or >75% vegetation coverage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majority clustered vegetation, or majority dispersed vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majority remnant vegetation, or majority planted vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td>Residential only, or Residential/agriculture</td>
<td></td>
</tr>
<tr>
<td>("Settlement" used only for wildland areas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest vegetation, or forest production area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearcut, or shrub growth/clearcut, or treed vegetation</td>
<td>Treed vegetation, or clearcut/shrubs</td>
<td>Clearcut, or shrub growth/clearcut, or treed vegetation</td>
</tr>
<tr>
<td>Non-forest vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasses, or shrubs, or mixed grass/shrub/power corridor</td>
<td>Agriculture, or other non-forested vegetation</td>
<td>grasses, or shrubs, or mixed grass/shrub/power corridor</td>
</tr>
<tr>
<td>- or -</td>
<td></td>
<td>- or -</td>
</tr>
<tr>
<td>Lawns: recreational lawns, or golf course, or other lawns</td>
<td>Agriculture: croplands, or orchards, or uncultivated fields/pastures</td>
<td>Lawns: recreational lawns golf course other lawns</td>
</tr>
<tr>
<td>- or -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-related features</td>
<td>River, or lake, or possible wetlands</td>
<td></td>
</tr>
<tr>
<td>Resource use/ extraction</td>
<td>Logging, or mining, or energy</td>
<td></td>
</tr>
<tr>
<td>("Resource use/extraction" used only for wildland areas)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polygons were classified by “dominant landscape”, then by “dominant land cover or land-use”. Polygons were further described using the categories below to each level 2 designation. For example, an area of single-family homes in a suburban area might be classified as: suburban, single-family residential, <25% vegetation coverage, majority dispersed vegetation, majority planted vegetation. An agricultural area might be classified as: rural, non-forest vegetation, agriculture, croplands.
Table 2: Definitions of dominant landscape categories

1. Urban: Buildings cover the majority of land. Building density is high and includes multi-family housing, multi-storied buildings, commerce, and industry. High-density single-family housing on relatively small lots (<0.2 ha) is also common. No urban areas were observed in the study.

2. Suburban: Building density is moderate and lawns and other vegetation are often readily apparent. Lawns and gardens are generally more extensive than within urban areas. Single-family housing predominates on small to moderately-sized lots (0.1–1.0 ha). Multi-family housing, basic services, and light industry are scattered throughout. Structures over two stories tall are uncommon.

3. Rural: Building density is relatively low and surrounded by agricultural lands. Settlement is sparse, primarily single-family housing on moderate to large lots (0.5–20 ha). For rural lands, we used 50% rather than 50% as the dominant landscape minimum because rural areas tend to be long and narrow in shape. Note that the above definition of rural differs from that of King County’s, which define rural lands as any area outside of the urban growth boundaries (UGBs) that are not designated as agriculture or forest production zones (see Fig. 1).

4. Exurban: Building density is relatively low and surrounded by natural vegetation (forests). Average lot sizes are often smaller than rural (0.2–20 ha). Limited amounts of commercial agriculture may be present, but it does not dominate the matrix. Exurban development is largely single-family housing carved out of a forest matrix.

5. Wildlands: Unsettled, primarily forested, lands that may occasionally include isolated dwellings.

To determine dominant landscapes, buildings in each polygon were viewed within a 1 km² context and assigned to one of the five categories listed below. At least 50% of the 1 km² area was required for a polygon to be labeled a particular dominant landscape. Modified from Marzluff et al., 2001.

study. Also note that “wildland” is not used in the traditional sense in this study, but is used to denote large tracts (>0.5 km²) of forest lands, with or without extremely light settlement. In this case, wildlands include privately-owned managed or unmanaged forests and government-owned parks, forest reserves, and wilderness.

Once the dominant landscape was determined, a polygon was then evaluated to determine the dominant land cover at the patch scale (level 2). The level 2 classifications functionally quantify land cover, but sometimes used differences in land-use to do so. For example, polygons were classified by different types of development (single-family or multi-family residential development or commercial development) rather than by simply defining land cover as “developed,” (i.e., a mixture of impervious surfaces and anthropogenic structures). These distinctions permitted the quantification of a fine level of conservation-relevant changes in land cover.

Each polygon was further evaluated to determine the specific characteristics of land cover (level 3). For example, areas with residential or commercial/industrial development were classified by the amount of vegetative cover (e.g., single-family residential settlement with <25% vegetation coverage 25–75% coverage, or >75% coverage). These metrics are important when assessing the value of the area as wildlife habitat. Undeveloped areas with forested and non-forested vegetation were classified by vegetation type (e.g., clearcut/shrubs, treed vegetation, or grass). Undeveloped areas in non-vegetated patches that were obviously not clearcuts (e.g., bare soil, paved) were classified by the nature of the land surface (e.g. paved or unpaved roads or lots; Table 1).

When possible, the specifics of land cover such as vegetation type and pattern were further described for each polygon. For example, polygons dominated by residential and commercial/industrial development were further classified as having clustered or dispersed vegetation and remnant or planted vegetation (Table 1). Remnant vegetation consists of the natural vegetation left after development while planted vegetation consists mainly of lawns and landscape plantings. Classification of the 1974 orthophotos differed slightly from classifications used for 1998. The classification system was initially developed based on the detail we believed could be accurately identified on the 1998 orthophotos. For example, at the onset of the project we believed that we could accurately distinguish between different types (coniferous, deciduous or mixed forest), ages (young versus mature), and complexity (simple versus complex) of forest vegetation on the 1998 orthophotos. However, the resolution was lower for the 1974 photos and differences between forest types less clear. As a result, the
number of categories used to classify forest vegetation on the 1974 photos had to be reduced from the twelve classifications initially used for the 1998 image, to two. The lower resolution of the 1974 image also affected the ability to accurately identify different types of development. Thus, a new classification category called “unknown development” (level 2) was added for the 1974 image.

At each classification level, polygons drawn on the orthophotos were classified based on the feature that comprised the greatest proportion of the polygon’s area. All polygons were drawn to be as homogeneous as possible. However, some polygons contained more than one fine-scale land-use/cover type or vegetation pattern/type (see, for example, the polygons shown on Fig. 2). When this occurred, only the land-use/cover type or vegetation pattern covering the greatest portion of the polygon was recorded. For example, a polygon in a suburban landscape that encompassed a homogeneous area of single-family residential development would also contain paved roads. Because the residential development was the dominant feature, this polygon was classified as “suburban, single-family residential settlement” rather than as “suburban, paved” (see Table 1). The paved roads within the development were considered apart of the overall pattern of development, rather than the dominant feature. This same polygon probably had both remnant and planted vegetation. If remnant vegetation comprised more than 50% of the total vegetation, the polygon was classified as having “remnant vegetation” at the finest level of classification.
At the start of this project, rules for digitizing and classifying polygons were established to ensure consistency in classification, such as when to include roads within a polygon versus when to make roads their own polygon, or how to distinguish “bare soil” from a recent “clearcut.” To ensure accuracy and consistency in interpreting the orthophotos, a training session was held in the study area to jointly practice the assignment of classification codes.

Periodic ground-truthing was used to verify the accuracy of assigned classification codes (for the 1998 image) and to resolve questions and concerns that arose during the digitizing process. When inconsistencies were discovered, classification codes were modified to reflect actual conditions. Approximately 25% of the study area was ground-truthed during the classification process.

Questions and concerns regarding the 1974 orthophotos were more difficult to deal with. Questionable areas were compared to the 1998 image for clarification. For example, a fuzzy area on the 1974 orthophoto that appeared to be devoid of vegetation and possibly developed might show up as a well-established forest stand on the 1998 image, indicating that it was most likely a clearcut in 1974. Where questions could not be resolved, the polygon was classified as unknown development.

The consistency of codes assigned during the classification process was tested partway through the digitizing process. Three of the five digitizers did 40 sample trials to assess the team’s consistency. There were some inconsistencies. For example, dominant landscape (level 1) was inconsistently classified 18% of the time and land-use/cover (level 2) was inconsistently classified 5% of the time. To correct this, the entire team reviewed the definitions for dominant landscape (Table 2) and rules for digitizing. Each person then reviewed their portion of the study area and made changes as needed. In sections of the orthophotos where classification was difficult, team members worked together. Polygons on the 1998 image that were difficult to classify were later ground-truthed.

Consistency tests also showed that fine-scale distinctions for forest vegetation (e.g., deciduous versus coniferous forest, various forest ages) were inconsistently classified 23% of the time. Ground-truthing also showed that forest vegetation was inaccurately classified much of the time. As a result, the fine-scale distinctions for forests initially used for the 1998 period were combined into a few classifications (e.g., treed vegetation) prior to analysis (Table 1).

2.4. Calculating interior forest habitat and edge

Interior forest area and edge density were calculated for wildland landscapes using patch analyst (Rempel et al., 1999), assuming a buffer of 200 m to account for edge effects (Kremsater and Bunnell, 1999). Edge density, a measure of edge in relation to total area, was calculated by dividing total edge by total area. Interior forest area was also calculated for fragments of clustered/remnant forest in areas dominated by single-family housing in suburban, rural, and exurban landscapes. Using 200 m for the extent of edge effects, each patch of vegetation-classified as clustered/remnant (>75% vegetative cover) in a polygon dominated by single-family housing was measured using arc view’s measurement tool to determine if the fragment had any area that was >200 m from settlement.

2.5. Patch analysis

The distribution of single-family housing and vegetative cover between the two study years was compared using a chi-square (χ^2) goodness-of-fit test. The number of patches of single-family housing or vegetative cover class (>25, 25–75, and >75%) were compared among dominant landscape classes (suburban, rural, exurban), also using the chi-square test. Mean patch size for each class of dominant landscape was also compared between study years using an independent sample’s t-test. Because the variance increased with the mean, all patch data was log-transformed prior to analysis (Zar, 1999).

2.6. Assessing the effects of changing policies

Growth management policies governing land-use and development in the study area changed significantly during the study period. Such policy changes can result in a noticeable change in housing development patterns around the time the new programs are implemented. Changes in patterns often start before new policies are enacted. For example, in the
years just prior to adoption of the King County’s 1985 comprehensive plan, there was a rush to subdivide larger parcels to “grandfather in” smaller parcels before lot sizes for buildable parcels increased (Reitnauher, Personal Communication). The effects of “grandfathering” could continue for up to several years after a new policy is enacted.

While the analysis of intermediate orthophotos (between 1974 and 1998) could reveal changes in land development patterns resulting from policy changes, it was unclear which years should be investigated. In addition, orthophotos were not available for many of the intervening years. Thus, external data sources were deemed superior than additional photo interpretation for determining the effects of these changes on the distribution of housing within the study area. Residential housing parcel data from King County (2002), which provides information about permits issued for construction of single-family residences county-wide, was analyzed for number of permits and amount of land developed on a year-by-year basis to look for changes in the pattern of residential land development, both inside and outside UGBs.

3. Results

3.1. Amount and pattern of change

Suburban and exurban landscapes increased between 1974 and 1998 (Fig. 3). In 1974, suburban and exurban lands together comprised just 8% of the study area, but by 1998 they covered almost a third. Suburban land increased by 756% and exurban land by 193% (Table 3). At the same time, rural lands decreased by 65% and wildlands by about 19%. Considering that in 1974 wildlands accounted for about 75% of the study area, this 19% decrease represents a substantial area (about 68 km²). Together, the reduction of rural and wildland areas represent the conversion of 23% of the study area (about 108 km²) from natural resource and agricultural production lands to residential and commercial development. Land that was suburban in 1974 generally remained suburban in 1998 (Table 4). However, only 19% of lands classified as rural in 1974 remained rural in 1998. Sixty-one percent of rural lands in 1974 became suburban by 1998, and 18% became exurban. Similarly, 19% of suburban lands and 17% of wildlands became exurban by 1998.

Settled lands became more contiguous during the 24-year study period, while fragmentation increased elsewhere (Fig. 4, Table 3). Mean patch size of suburban and exurban lands increased by 453% and 268%, respectively. This constitutes infilling between Seattle and the once-isolated fringe communities of Issaquah, Snoqualmie, and North Bend (Fig. 3). At the same time, mean patch size for rural and wildlands decreased, indicating increased fragmentation (Figs. 4 and 5). In addition to large differences in mean patch size between 1974 and 1998 for all landscape categories, there was also a large variance in patch size...
in 1998. Thus, only the increase in exurban patch size was statistically significant (Table 3).

Interior forest habitat in wildland areas, calculated assuming edge effects extend 200 m into wildlands from the other dominant landscape categories, decreased from 29,721 ha in 1974 to 17,679 ha in 1998, a loss of 41%. The number of wildland patches with some interior forest increased from 11 to 17, but the
average size of these areas declined by 61%, from 2701 to 1040 ha. Total edge (measured as the length of interface between wildland and other dominant landscape categories) decreased by 29%, from 913 to 644 km. This decrease in edge reflects the overall decrease in size of core areas. Edge density, a measure of edge in relation to total area, increased from 30 m/ha in 1974 to 36 m/ha in 1998.

In 1998, the amount of vegetative cover within single-family residential areas varied significantly ($\chi^2 = 45.3$, d.f. = 4, $P < 0.05$). Not surprisingly, the amount of vegetative cover within single-family housing developments was higher in rural and exurban areas than in suburban areas (Table 5). Eighty percent of the area covered by rural single-family housing and 92% in exurban single-family housing areas had >75% vegetative cover, but only 36% of suburban single-family residential areas had that much vegetation. In contrast, less than 5% of rural and exurban single-family residential areas had <25% vegetative cover, compared to 24% of suburban residential areas (Table 5).

Vegetation in single-family housing developments was highly fragmented and the remaining fragments were frequently isolated with little connectivity (Fig. 5). In general, vegetation across all patches dominated by single-family development was dispersed (76%) rather than clustered (24%). In suburban and rural lands, much of the vegetation was planted (42 and 57%, respectively), not remnant. However, in exurban lands, remnant vegetation was dominant in 94% of all housing developments. Some developments had substantial fragments of clustered/remnant vegetation (Table 6). However, these fragments were mostly elongated (rather than compact), with a high edge/interior ratio. Even when adjacent fragments in areas dominated by single-family housing could be combined to form large patches, no patches had any area >200 m from the edge, and only one patch contained any area at a distance >100 m from an edge.

Table 4
Percent change in dominant landscape from 1974 to 1998

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Suburban</td>
<td>Suburban</td>
<td>661*</td>
<td>92</td>
</tr>
<tr>
<td>Suburban</td>
<td>Rural</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Suburban</td>
<td>Exurban</td>
<td>47</td>
<td>7</td>
</tr>
<tr>
<td>Suburban</td>
<td>Wildlands</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Rural</td>
<td>Suburban</td>
<td>3304</td>
<td>54</td>
</tr>
<tr>
<td>Rural</td>
<td>Rural</td>
<td>1780*</td>
<td>29</td>
</tr>
<tr>
<td>Rural</td>
<td>Exurban</td>
<td>880</td>
<td>14</td>
</tr>
<tr>
<td>Rural</td>
<td>Wildlands</td>
<td>1873</td>
<td></td>
</tr>
<tr>
<td>Exurban</td>
<td>Suburban</td>
<td>688</td>
<td>22</td>
</tr>
<tr>
<td>Exurban</td>
<td>Rural</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Exurban</td>
<td>Exurban</td>
<td>2373*</td>
<td>77</td>
</tr>
<tr>
<td>Exurban</td>
<td>Wildlands</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Wildlands</td>
<td>Suburban</td>
<td>1054</td>
<td>3</td>
</tr>
<tr>
<td>Wildlands</td>
<td>Rural</td>
<td>240</td>
<td>1</td>
</tr>
<tr>
<td>Wildlands</td>
<td>Exurban</td>
<td>5733</td>
<td>16</td>
</tr>
<tr>
<td>Wildlands</td>
<td>Wildlands</td>
<td>28340*</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45282</td>
<td></td>
</tr>
</tbody>
</table>

*Note that each category shows the amount of land that did not change. Note also that water features are excluded from this analysis.

Table 5
Vegetation cover in single-family housing developments, 1998

<table>
<thead>
<tr>
<th>Category</th>
<th><25%</th>
<th>25-75%</th>
<th>>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (ha)</td>
<td>%</td>
<td>Area (ha)</td>
</tr>
<tr>
<td>Suburban</td>
<td>678.9</td>
<td>24</td>
<td>1090.7</td>
</tr>
<tr>
<td>Rural</td>
<td>15.5</td>
<td>4</td>
<td>66.7</td>
</tr>
<tr>
<td>Exurban</td>
<td>15.5</td>
<td><1</td>
<td>341.9</td>
</tr>
<tr>
<td>Total</td>
<td>709.9</td>
<td>9</td>
<td>1499.3</td>
</tr>
</tbody>
</table>

Single-family housing in rural and exurban areas are highly vegetated (>75%), while those in suburban areas have a mix of low (<25%), medium (25-75%) and high (>75%) levels of vegetation.
Fig. 4. Changes within each category of dominant landscape, 1974–1998. Each map shows change in dominant landscape (suburban, exurban, rural, and wildland) from 1974–1998. Note that suburban and exurban areas are increasing over time while rural and wildland (wild forests and forest production lands with light settlement) are decreasing. These are the same data contained in Fig. 2, but presented here to clearly show changes within each type of landscape.
Fig. 5. Distribution of vegetation, 1974 and 1998. (a) and (b) show changes in vegetative cover; (c) shows vegetation patterns in single-family housing for 1998. No parks are shown for 1974.
There were approximately 271 more hectare of surface water in the study area in 1974 than in 1998. About 112 ha of the difference are due to the loss of surface water bodies to filling and development along shorelines. For example, three areas east of Snoqualmie that total about 60 ha were ponds in 1974, but agricultural fields in 1998 (Fig. 5). The presence of these agricultural fields in 1998 was verified by ground-truthing. The remainder of the difference (159 ha; 0.3% of the study area) appeared to be due to slight differences in digitizing rivers and lakes in the two study years. Because the 1998 image had a much higher resolution than the 1974 image, the shorelines of rivers and lakes were digitized much more tightly and accurately than for 1974. In general, polygons drawn for rivers and lakes were broader for 1974 than for 1998.

3.2. Expansion of low-density, single-family housing

Single-family housing was a primary cause of land conversion. Expansion of single-family housing (Fig. 6) closely resembles the overall pattern of land conversion (Figs. 3 and 4). There were significantly more patches of single-family housing in suburban and exurban areas in 1998 than in 1974 ($\chi^2 = 44.72$, d.f. = 3, $P < 0.001$), while the number of patches of single-family housing in areas now classified as rural and wildland remained relatively constant. However, most single-family development since 1974 has taken place in former wildland areas that are now classified as exurban. Conversion to commercial development was more frequent in already settled areas.

Total land developed for residential housing and commercial uses within the study area increased by 134%, from 3842 ha in 1974 to 8994 ha in 1998. In each study year, about 88% (3380 and 7976 ha, respectively) of developed land consisted of single-family housing. The percent of land devoted to commercial development also stayed relatively constant (12 and 10%, or 463 and 895 ha, respectively). No multi-family housing was observed in 1974, and only 1.4% (123 ha) of all developed land in the study area was classified as multi-family in 1998. It is important to note, however, that 1108 ha of developed areas were classified as "unknown development" in 1974 due to poor image resolution (Fig. 6). Comparison of these unknown areas to the same locations in 1998 showed that they were most likely to have been either single-family housing in 1974 or clearcuts later developed for single-family housing. As a result, they were grouped with single-family housing during analysis of 1974 data. Because of this uncertainty, however, the amount of single-family housing is likely overstated in 1974 and multi-family and commercial development may be understated.

3.3. Relationship between development patterns and policy changes

There was considerable expansion of low-density single-family housing outside the UGBs between 1974 and 1998 (Fig. 6). Although some of the development outside the UGBs occurred before the UGBs were established in 1994, residential housing parcel data from King County (2002) showed that
a substantial portion occurred after the UGBs were established (Fig. 7; Table 7). However, based on a year-by-year analysis of residential building permits issued for the study area between 1974 and 2001, there was no clear pattern of development of rural areas related to implementation of either the 1985 or 1994 King County comprehensive plans. The correlation between study year and the number of residential building permits issued was weak (Spearman’s rank correlation, $r = 0.13$, $n = 28$, $P = 0.51$).

Fig. 6. Expansion of single-family housing within rural, exurban, and suburban landscapes, 1974–1998. For data analysis, unknown development is grouped with single-family housing in 1974.
County parcel data showed that most of the residential building permits (77%) issued from 1995 to 1998 (following implementation of the 1994 comprehensive plan) were for parcels inside the UGBs, indicating that building density increased within existing urban areas. However, the increase in the percent of residential building permits issued within urban areas since establishment of the UGBs (1994) is rather slight (Table 7). From 1995 to 1998, 60% of land permitted for new residential development within the study area occurred outside the UGBs (Table 7). Thus, the total land area newly devoted to housing is much greater outside the urban growth boundaries, despite the relatively low number of residential building permits issued for those areas. These same trends continued through 2001 and are consistent with residential housing development county-wide. For example, parcel data for 1997 to 2001 show that county-wide, 14% of new residential building permits (5494) were issued for parcels outside UGBs, yet total land area developed for residential housing outside the UGBs was 61%. County-wide, a total of 14343 ha (61%) were committed to new residential construction outside UGBs, while 9084 ha (39%) of land was developed within UGBs from 1995 to 2001 (King County, 2002).

4. Discussion

4.1. Ecological effects of low-density development in King County

King County's growth management policies have targeted rural and wildland areas outside designated urban growth boundaries for low-density residential development, ostensibly to maintain rural character and protect the natural environment of these areas while still allowing some development to occur (KCORPP, 2000b). King County is not alone in using low-density development as a means to limit impacts to rural areas. Decreasing the density of residential housing, also known as "downzoning," has been used by many local governments, in an effort to maintain community character, create open space, and protect the environment (Gillham, 2002). However, as Gillham (2002) points out, downzoning is not necessarily an effective method for preserving rural
Table 7: Distribution of building permits and land committed to construction of residential housing within study area

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (ha)</td>
<td>% Total</td>
</tr>
<tr>
<td>Inside UGB</td>
<td>1317</td>
<td>5.5</td>
</tr>
<tr>
<td>Outside UGB</td>
<td>2354</td>
<td>6.5</td>
</tr>
<tr>
<td>Total</td>
<td>3671</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Character or protecting the environment; additional houses are still constructed and undeveloped land is still subdivided into smaller parcels, all of which result in adverse environmental impacts, loss of open space, and increased traffic and infrastructure costs.

As shown by this study, the policy of low-density zoning has had unintended consequences. Despite the apparent increase in density of existing urban areas, this zoning policy has resulted in wide-spread, low-density single-family residential development outside the UGBs in the study area, resulting in substantial loss of rural areas and wildlands to suburban and exurban development. This has clearly had a major impact on landcover in the study area—converting, fragmenting, and isolating forest and rural lands. Native forest understories have been replaced with exotic, planted landscapes. The pattern of housing seen in exurban portions of the study area, dispersed throughout what were formerly rural areas and wildland, has noticeably reduced interior forest habitat. The few fragments of clustered/remnant vegetation present in patches dominated by single-family housing were too small to include interior habitat; just one patch had forest >100 m from its interface with developed land. Some patches without interior habitat were adjacent to parklands and working forests (Fig. 5), increasing the possibility of interior conditions. However, many of these working forests are themselves fragmented by roads and logging activities, which increase the potential for human impacts (Rochelle et al., 1999).

For example, in his study of suburban forest fragments in Delaware, Matlock (1993) showed that sites adjacent to roads were significantly more affected by human activities than those away from vehicle access.

Fragmentation of once contiguous forests can potentially affect many sensitive species that require interior forest conditions. Species that would be negatively affected by this change in our area include the federally threatened Northern Spotted Owl (Strix occidentalis) and Marbled Murrelet (Brachyramphus marmoratus), neotropical migrant birds such as the Wilson’s Warbler (Wilsonia pusilla), and sensitive resident species like Winter Wrens (Troglohytes troglodytes), spotted frogs (Rana pretiosa), Pacific giant salamanders (Dicamptodon tenebrosus), dusky and Trowbridge shrews (Sorex monticolus and S. trowbridgii), and shrew-moles (Neurotrichus gibbsii).
Broadly applied low-density zoning policies need to be refined to reduce sprawl, fragmentation, and habitat loss. Rather than zoning all areas outside of UGBs for low-density residential development, King County and other local governments should consider zoning at least some of these areas at a variety of higher densities while limiting the overall number of dwelling units that could be constructed in a given area. In addition, some areas should also be zoned for clustered development. Clustering allows some land to be set aside as open space, helping to preserve rural character while reducing habitat loss, environmental impacts and infrastructure costs (Gillham, 2002). Within a given area, some parcels should be zoned for clustered development while others should be zoned for no development. In this model, the overall number of residential structures would remain the same, but much less land would be consumed. As an example, if rural residential lot sizes were reduced from 2–8 ha (5–20 acres) to 1 ha (2.5 acres; still a relatively large lot), and if these residential parcels were clustered, then a substantial amount of land would remain undeveloped and possibly even able to provide interior forest conditions. If this had been done in the study area, the amount of land consumed by the 1125 residential structures constructed outside UGBs between 1994 and 2001 would have been reduced from 8905 to 2813 acres, a reduction of 68%. This would have greatly decreased the fragmentation of forests and losses of interior forest documented by this study.

King County has taken some steps to encourage protection of significant habitats and other critical areas in rural and exurban areas, including buffering sensitive watercourses; creating interior forest reserves, protecting rare habitat elements (dead and downed trees, native understory, seeps, etc.), and maintaining key ecosystem processes (decay, natural disturbance regimes including fire, etc.). However, designation of long-term forest and agriculture production areas has had the most beneficial impact in terms of the broader landscape-level conservation of environmental resources in the county. As shown in Fig. 1, more than half the county has received these long-term designations; this has strongly limited the spatial extent of future growth. In these production areas, land has to remain in large parcels, the priority land-use is for agriculture or forest production, and there are strong limitations on development (King County, 1994). With these designations, the county has effectively created three development zones: urban growth areas, lower density rural areas, and forest and agriculture production areas (see Fig. 1). Thus, while we see sprawl occurring within the study area, the future extent of sprawl has been effectively limited by designation of the forest and agriculture production areas as well as the proximity of large state and federal land holdings.

This foresight by King County should not be underestimated. At present, more than 250,000 acres of King County's forest production lands are in private ownership (KCORPP, 2001), with the remainder consisting of large blocks of federal, state, or county-owned land. Most of the privately held lands are adjacent to the rural areas slated for low-density development. Given the amount of privately-owned forest production land, it is likely that some of these areas would have already been developed without these long-term designations, thereby increasing the extent of sprawl. Although little new residential construction is supposed to occur in these areas, they are already under pressure for a greater level of development (The Seattle Times, 2000).

4.2. Applicability and generalizability

The results from this study indicate that aerial photographs (orthophotos) are an accurate means to document and analyze land-use/land cover changes and patterns in urbanizing areas. When used with computer-based GIS programs, high-quality orthophotos provide a level of landscape detail not achievable with remote sensing. Aside from the scale resolution limit of about 7000:1, the primary limiting factor is the ability of classifiers to accurately and consistently identify the details shown on the photo. This can be overcome through the use of strict rules for digitizing and classifying, and training sessions. The classification system used to describe land cover/land-use in the study area can also be a limiting factor if the needs and objectives of the study are not well thought out before beginning the digitizing process. The need for constant communication between classifiers and the need for ground-truthing throughout the classification process became readily apparent during the course of this study. Periodic tests of consistency between classifiers are also necessary to ensure that the data generated are reliable.
With these measures in place, use of orthophotos, the classification system, and method are recommend for those researching the heterogeneous, dynamic landscapes found in urbanizing areas in other geographic regions. For example, using high-resolution orthophotos coupled with an appropriate classification system would add valuable ground-level detail to an analysis of land cover/land-use changes, such as the ongoing studies being conducted in Russia using a combination of satellite imagery and historical maps (Milanova et al., 1999). Similarly, an orthophoto study could add detail to an analysis of the pattern of residential construction found in areas where government policies limit construction, such as in the “Green Heart” area of the Netherlands (Tjallingii, 2000).

The habitat fragmentation and loss of interior habitats documented by this study are generalizable to geographic areas throughout the world experiencing rapid growth and sprawling, low-density development. This is widespread throughout the Western US, where exurban and rural settlement is common throughout privately held lands (Hansen et al., 2002). Fragmentation of forests, open space, and agricultural lands is also a frequently-discussed impact in other countries including The Netherlands (Valk, 2002) and Japan (Sorensen, 1999). The spatial extent of low-density settlement is likely unique to each region and set by a combination of settlement policies. Washington State, for example, has strong growth management policies that have slowed moderate- to high-density settlement beyond county-defined UGBs. However, even such legally-mandated growth management appears unable to truly limit lower density settlement in privately-owned agricultural and forested lands beyond urban growth boundaries. For example, this study showed that in King County, 61% of land committed for residential construction between 1995 and 2001 took place outside designated urban growth boundaries. Similarly, “compact city” policies that encourage construction of new residential development within existing urban centers, coupled with restrictive land development policies for the rural green heart area of The Netherlands, have not been entirely successful. Tjallingii (2000) noted that a substantial portion of new residential construction is still occurring within the restricted green heart area, including 43% of new housing between 1989 and 1994. In King County, local geology, land ownership, and zoning interact to stop settlement in high-elevation federal and state lands that are currently zoned for resource production and recreation. In other settings, lands reserved from settlement may not exist in proximity to sprawling urban centers and therefore more extensive low- to high-density settlement is likely depending on the existence of local growth management policies.

5. Conclusions

Policies encouraging dispersed, low-density development in rural and wildland areas have clear implications for planners and biologists. This paper showed that scattered, low-density housing consumes natural habitat, in much greater quantities than if housing were predominantly constructed at higher densities in more compact developments (Gillham, 2002). The unintended consequence—the increasing loss, fragmentation, and isolation of natural habitats—is the opposite of what these policies were intended to accomplish: conserve fish and wildlife habitat, protect and enhance the environment, while still allowing some residential development to take place (KCORPP, 2000b). The power of designating long-term natural resource and agriculture production areas, in combination with policies that encourage increased density of urban areas and limit growth in more rural areas, is also clearly indicated. Without these long-term designations, sprawling, low-density development would likely become more widespread throughout the county, increasing habitat fragmentation while decreasing the amount of interior habitat available to wildlife species. The designated forest and agriculture productions lands act as a barrier, effectively limiting the spread of new residential development away from urban areas.

As human populations become increasingly urban, without policy changes to control it, sprawl will become even more widespread than at present. In the year 2000, about 3 billion people (50% of the world’s population) lived in urban areas and this figure is expected to reach 5 billion by 2025 (UNU/IAS, 2003). Countries enacting growth management policies to control sprawl should be wary of using low-density zoning to limit development in the more rural areas outside urban centers. As this study showed, using low-density zoning to restrict development may have
unintended consequences and may in fact encourage sprawl.

Acknowledgements

This project was developed as part of the interdisciplinary Urban Ecology Program at the University of Washington. Graduate Students, Undergraduates, and Faculty from the College of Forest Resources, Geography Department, School of International Studies, and Urban Design and Planning Department worked together to define a problem related to land conversion at the urban fringe, then to develop a research program to address it. Cathy Lander, Colleen Srull, and Sasha Sajovic helped develop the project and the Land Classification System, and put in long hours digitizing orthophotos. Tina Rohila, Alex Cohen, and Dana Morawitz worked on the remote sensing portion of this project and provided valuable input and assistance. Eric Shulenberger, Clare Ryan, Craig Zumbrunnen, Gordon Bradley, and Marina Alberti provided guidance and critically reviewed all aspects of the project. Phil Hurvitz taught us the basics of GIS. We also wish to thank Washington Department of Natural Resources for providing the aerial orthophotos, and King County for the use of their GIS database. Funding was provided by the US National Science Foundation (IGERT-0114351) and the University of Washington’s Tools for Transformation program administered by Debra Freidman. We also wish to thank the anonymous reviewers of our manuscript, whose comments greatly improved our paper.

References

KCPCD (King County Department of Planning and Community Development), 1985. King County Comprehensive Plan. King County, Washington.

King County, 1994. King County Comprehensive Plan: King County Department of Development and Environmental Services, King County, Washington.

King County, 2002. King County Spatial Data Catalog: Zoning. King County GIS Center, King County, Washington.

KCORPP (King County Office of Regional Policy and Planning), 2000a. The Annual Growth Report 2000. King County, Washington.

KCORPP (King County Office of Regional and Policy Planning), 2000b. King County County-Wide Planning Policies. King County, Washington.

KCORPP (King County Office of Regional Policy and Planning), 2002. King County County-wide Planning Policies. Updated November 2002. King County, Washington.

Guide for Authors: Landscape and Urban Planning

1. Aims and Scope

Landscape and Urban Planning is an international journal aimed at advancing conceptual, scientific, and applied understandings of landscape in order to promote sustainable solutions for landscape change. Landscapes are visible and integrative social-ecological systems with spatial variable and temporal dimensions. They have expressive aesthetic, natural, and cultural qualities that are perceived and valued by people in multiple ways and invite actions resulting in landscape change. Landscapes are increasingly urban in nature and ecologically and culturally sensitive to changes at local through global scales. Multiple disciplines and perspectives are required to understand landscapes and align social and ecological values to ensure the sustainability of landscapes. The journal is based on the premise that landscape science linked to planning and design can provide mutually supportive outcomes for people and nature.

Landscape science brings landscape ecology and urban ecology together with other disciplines and cross-disciplinary fields to identify patterns and understand social-ecological processes influencing landscape change. Landscape planning brings landscape architecture, urban and regional planning, landscape and ecological engineering, and other practice-oriented fields to bear in processes for identifying problems and analyzing, synthesizing, and evaluating desirable alternatives for landscape change. Landscape design brings plans, designs, management, preservations, policies and other activities and form-giving products to bear in effecting landscapes change. The implementation of landscape planning and design also generates new patterns of evidence and hypothesis for further research, providing an integral link with landscape science and encouraging transdisciplinary collaborations to build robust knowledge and problem solving capacity.

2. Article Types

Landscape and Urban Planning publishes original, empirical research on important international and regional issues in landscape science, with an emphasis on applied work that provides solutions for landscape design. Most manuscript submissions take the form of full-length Research Papers. Shorter Research Notes are also encouraged as described below. To facilitate the discourse of landscape science and design, a limited number of articles of other types will also be considered for peer review upon approval by one of the Co-Editors-in-Chief prior to submission.

2.1. Research Papers

Given the problem-driven nature of landscape science and the journal’s commitment to linking research and practice, most Research Paper submissions will fall within the area of applied research. Purely conceptual or theoretical work will be considered on a limited basis under the Perspective Essay article type (see below). Otherwise, Research Papers focused on modeling and other “basic” research efforts should include at least a small sample of data to demonstrate proof-of-concept. Whether basic or applied, all Research Papers should describe the relevance of the work and its implications for landscape and urban planning, design, management and/or policy. Research Papers are typically between 4000 and 6000 words, including manuscript text and references (use 25-60 references as a guideline). Some exceptions to the upper length limit may be allowed for reports of large-scale interdisciplinary and transdiscipllnary projects or for qualitative research where in-text quotations provide evidence in lieu of tables and figures. An abstract (250 words or less), keywords (3-8), and research highlights (3-5) are also required. Tables and figures should be used with economy to convey essential aspects about study concepts and findings. One or two contextual photos may be optionally included as figures to convey to readers the essential nature of the landscape and issues examined in the article. Other informative materials may also be optionally submitted, including Appendices, Acknowledgments, short Author Biographies, Graphical Abstracts, Google Maps (KML files), Embedded Audio and Video files, and Supplementary Material for online-only publication (see Section 3.8 below).

2.2. Research Notes

A Research Note is a concise but complete description of a limited investigation that will not be included in a later...
paper. It provides one of the following functions: (1) presenting initial proof-of-concept results on new ideas, timely issues, or innovative approaches; (2) reporting replications or extensions of previously published research that does not merit another full-length treatment yet provides results that contribute to a greater understanding of the phenomena under study. Research Notes should typically be limited to 2000 words and a total of 3 tables and figures, yet be sufficiently documented, both by reference to the essential literature and description of methods employed, for readers to be able to assess the scholarly rigor of the research. A Research Note should include a brief (150 words or less) abstract, keywords (3-6), and research highlights (3-5). The title of the submission should be prefaced with the words “Research Note.”

2.3. Review Articles
Review Articles examine a coherent and comprehensive set of published research studies or other works (e.g., policies, reports, case studies) covering a subject area of current or emerging interest. They can take one of two forms: (1) Narrative Reviews identify, synthesize, and/or offer critical assessments of the state-of-the-art in knowledge about a subject, highlighting important concepts, variables, and theories under study, problems and knowledge gaps yet to be addressed, and guidance for future research. (2) Analytical Reviews involve systematic assessments of the literature, often using bibliographic database search and retrieval systems such as Scopus or Web of Science, alone or in combination with full-text searching, mining, and analysis software. These include Systematic Reviews and meta-analyses that follow a standardized format aimed at building a base of knowledge for evidence-based design (e.g., http://www.environmentaldisorder.org/EID/Conservation.htm). They also include quantitative, bibliometric techniques such as citation analysis and qualitative analyses of content themes aimed at identifying the structure of and trends in knowledge about an area of inquiry. Review Articles are typically between 8000 and 10,000 words in length, including references and tables. Please include an abstract (250 words or less), keywords (3-6), and research highlights (3-5), and follow APA 6th Edition guidelines (Section 6.28) for referencing documents included in your analysis. Review Articles may be invited or offered but must be approved by one of the Co-Editors-in-Chief prior to submission. Those considering submitting a Review Article to the journal are encouraged to send a prospectus or attach a cover letter with their submission outlining the topic and scope of coverage, originality and need for the review, number, type (i.e., peer-reviewed journal vs. other document types), and international range of citations included, and a brief assessment of previously published reviews related to the topic.

2.4. Perspective Essays
Perspective Essays present new ideas or frameworks; challenge current thinking, policies, or approaches; or otherwise offer thoughtful reflections aimed at improving our understanding of the interactions between people and nature and built environments and their implications for landscape planning, design, management, and policy. Perspective Essays should be grounded in the existing literature and adequately referenced but with an emphasis on original thought rather than an exhaustive accounting of the ideas of others. Perspective Essays may range from 2000 to 8000 words in length with a limited number of tables and figures. Except for short essays, submissions should be structured with section headings that convey to readers key themes and a logical flow of ideas. An abstract (250 words or less), keywords (3-6), and highlights (3-5) are required. Perspective Essays may be invited or proposed but must be approved by one of the Co-Editors-in-Chief prior to submission.

2.5. Comments and rejoinders
A Comment is a critical or explanatory note on an article published in Landscape and Urban Planning. It may be invited or proposed but must be approved by one of the Co-Editors-in-Chief prior to submission. Comments should typically be of 2000 words or less with a limited number of references. Please include a short abstract (150 words or less), 3-5 highlights, and 3-6 keywords. The title of the submission should be prefaced with the words: “Comment on,” followed by the title of the previously published article and the authors’ names. ‘Should one or more Comments be accepted for publication, the handling editor may invite the author(s) of the previously published article to write a Rejoinder, which may be published along with the Comments.

2.6. Editorialts
The Co-Editors-in-Chief, Associate Editors, Editorial Board members, and invited guests may occasionally provide brief commentaries on significant issues of relevance to the journal’s aims and scope, introductory essays to special issues, as well as news and information relevant to the journal and its readers.

2.7. Book Reviews
The editorial team is not accepting books for review at this time. Please consult the online Guide for Authors for future updates.

2.8. Special Issues
A Special Issue (SI) in Landscape and Urban Planning is a coherent collection of 10-15 papers on a specific theme of research and scholarship that falls within the aims and scope of the journal and has a broad, international appeal. Research Papers form the core of a Special Issue, but SIs are also given breadth and depth by an introductory Editorial and other articles which may include a Perspective Essay, Review Article, Research Notes, and Comments. SIs are proposed and orchestrated by a guest editor under the guidance of a member of the journal’s editorial team, and are selected for development through a competitive process of proposal submission and evaluation. The journal’s editors welcome innovative proposals of high quality and relevance from prospective individuals or teams, and may publish up to four SIs per year. Proposals are due July 1st of each year with selections announced in October. Information and proposal guidelines were described in an editorial published in Vol 165(4) which is available through the Editor’s Choice link on the journal’s web page: http://www.journals.elsevier.com/landscape-and-urban-planning/ or from the Editorial Office.

3. Manuscript Submission Process
The editorial staff of Landscape and Urban Planning will facilitate a double blind peer review process for original manuscripts that meet the following requirements:

Fit within the aims and scope of the journal and conform to one of its article types.

Are written in English and comply with ethical standards and formatting guidelines.

http://www.elsevier.com/journals/landscape-and-urban-planning/0169-2046/guide-for-auth... 3/25/2013
Guidelines for authors | Landscape and Urban Planning | 0169-2046 | Elsevier

Exhibit good scholarly qualities and research significance as assessed by an editor's initial "desk" review.

Except for ad hoc situations, all activity relating to submission takes place via the online submission page of this journal at http://ees.elsevier.com/landscape. This URL connects you with the journal's portal into the Elsevier Editorial System or EES, a comprehensive system for handling author submissions, reviewer evaluations, and editorial decisions. To ensure a smooth, correct, and efficient submission in EES, prepare each submission component BEFORE logging into the system. Once you begin the submission process you may also stop at any point, saving the information you have added and returning to a later time to finish or modify your incomplete submission.

3.1. Register and Log in to Submit New Manuscript
The Corresponding Author is the person designated by an author or group of authors of a manuscript to serve as the single contact for manuscript submission, revisions, publication, and related correspondence. Corresponding authors who have never registered as an author or reviewer for Landscape and Urban Planning must first do so prior to submitting a manuscript. If you have previously registered or even received an invitation to review a paper for the journal, do not re-register. If in doubt, attempt to log in and if necessary, check your information on your personal account page using the Change Details link. Please contact the Editorial Office at land@elsevier.com if you have any questions or difficulties.

Once successfully logged into EES, the Corresponding Author can begin the submission process through the Submit New Manuscript link on his or her Author Main Menu page. From this point, the author will be guided step-by-step through the creation and uploading of the various files. The system automatically converts and compiles source files into a single PDF file of the article, which is used in the peer-review process. All correspondence and file handling, including notification of the editor's decision and requests for revision, take place by e-mail and through the author's EES page. A printed copy of the manuscript is not required at any stage of the process.

The sections below correspond to the submission sections that can be found along the left-hand column throughout the online submission process.

3.2. Select Article Type (required)
You will be asked to select the type of contribution you are submitting from a drop-down menu. Use the categories presented in Section 2. Article Types in this document as a guide.

3.3. Enter Title (required)
The title should be concise, informative, and straightforward. Capitalize the first word of the title and the first word after a colon. Avoid abbreviations and formulae.

3.4. Add / Edit / Remove Authors (required)
The Corresponding Author is already listed as First Author at the bottom of this page (changes and additions must be made through the "Change Details" link at the top of the page; these will automatically update any personal details needed for your manuscript the next time you log in). For additional authors, provide the following information for each author: Name, affiliation, and e-mail address. You can use the arrow key to change author order. You may also change the Corresponding Author here but note that once this is done, the original corresponding author will no longer have access to the submission through their account.

3.5. Submit Abstract (required)
Provide a concise abstract (see length limit under Article Types) that clearly states the purposes of the research, methods, principal findings and conclusions, and key implications. An abstract is often viewed separately from the article, so it must be able to stand alone. References should be avoided and abbreviations (if necessary) must be defined at their first mention in the abstract itself.

3.6. Enter Keywords (required)
Provide a maximum of 6 keywords specific to your submission. Choose terms carefully as the keywords will be used for indexing and database searching purposes. Limit keywords to one concept per keyword. Avoid entire phrases and repetition of the title. Only use abbreviations firmly established in the field. Separate keywords with semi-colons.

3.7. Additional Information (required)
3.7.1. Paper’s Suitability - The authors should prepare a statement of 50 words or less regarding 1) the purpose and significance of the paper and 2) how the paper fits within the aims and scope of the journal.

3.7.2. Publishing Ethical Standards - We ask that authors carefully read each statement and state that their submission follows each ethical standard in the text boxes provided. Note that in the initial screening process, our editorial staff uses plagiarism software to check the originality of the entire manuscript as well as any publications history of parts of the manuscript. If evidence of any plagiarism is found, your manuscript will be immediately rejected.

Reporting Standards - This manuscript presents an accurate account of the work performed as well as an objective discussion of its significance. Data and their interpretations are represented truthfully in the paper. The paper contains sufficient detail and references to permit others to replicate the work. The paper does not include fraudulent or knowingly inaccurate statements.

Originality and Plagiarism - This submission is an original work by the authors. Any work by others has been appropriately cited or quoted. Paraphrasing or direct quotation is used when presenting the ideas and findings of others. This research does not duplicate others’ work or make claims without proper acknowledgment.

Multiple, Redundant, or Concurrent Publication - This manuscript or significant part of it have not been published in any form in other journals or primary publications, including non-English language publications, nor has the manuscript been concurrently submitted to any other journal or publication.

Acknowledgment of Sources - This paper properly acknowledges any work of others that has been influential in determining the nature of the reported work. Any information obtained privately through

http://www.elsevier.com/journals/landscape-and-urban-planning/0169-2046/guide-for-auth...

3/25/2013

019000
correspondence or through confidential means is not used without explicit written permission from the
source.

Authorship of the Paper - Authorship of this submission is limited to those who have made significant
contributions to the conception, design, execution, or interpretation of the reported study. Those who have
participated in other aspects of the research project are listed in the optional acknowledgment section. The
responding author has ensured that all co-authors have reviewed and approved the final version of the
paper and have agreed to its submission for publication.

Hazard and Human or Animal Subjects - Any hazards associated with the conduct of the research are
identified within the manuscript. If this work involves human or animal participants, a statement regarding
compliance of relevant laws and institutional committees is included in the manuscript.

Disclosure and Conflicts of Interest - All authors have disclosed in the manuscript any financial or other
substantial conflicts of interest that might be construed to influence the results or interpretation of the
manuscript. All sources of financial support for the project are disclosed within the acknowledgment section.
(Note: Examples of potential conflicts of interest that should be disclosed include employment,
consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and
grants or other funding.)

3.8. Suggest Reviewers (required)

It is suggested that authors suggest at least five reviewers based on the key topics or approaches dealt with in the
manuscript. The editorial staff selects appropriate reviewers from a number of different sources, including those
suggested by the authors. Please ensure your suggested reviewers are geographically diverse, technically qualified
to review your paper, and do not have any conflicts of interest regarding the authors or subject matter of your work.
Conflicts of interest include (but are not limited to) current employment at same institution, close colleagues, industry
sponsors, professional partnerships, past or present association as thesis/dissertation advisor or student, and direct
collaborators on a project or major co-authors on a publication within the last 5 years. Prepare the following
information for each suggested reviewer. Please ensure that the information you provide is accurate and up-to-date.

3.8.1. First and last name

3.8.2. Academic degree(s)

3.8.3. Institution

3.8.4. Current e-mail address

3.8.5. Country

3.8.6. Reason - Use up to 40 words to describe the reason this reviewer was selected. Use keywords or short
statements indicating key qualifications, research experience, and/or areas of expertise. Avoid generic statements,
such as "expert in the field," and do not include the same reason for all suggested reviewers.

3.9. Attach Files (required)

In the final part of the submission process, you will upload your documents into EES to complete your submission file.
You may add or remove documents throughout the submission process. Please pay close attention to the technical
requirements of these documents. This will ensure efficient processing and handling of your manuscript.

General formatting guidelines for all source files: All submission text files should be in doc or docx file formats
(see below for further file format guidelines). Each of the documents below should be prepared and
submitted as separate documents. Ensure that all text documents are letter sized (8.5" x 11") with 1-inch margins on
all sides. Some exceptions will be made for tables that are better presented in landscape page orientation. All text
must be in 12-point Times New Roman font with left-margin alignment. The detailed response to reviewers
(submitted for revised manuscripts) should include plain page numbers (no running heads) in the upper-right corner of each page. If not otherwise specified, follow formatting and other style guidelines

3.9.1. Cover Letter (optional for new submissions, required for revised submissions) - Please use the cover
letter to convey your interest in the Editor's subject not otherwise included in the required
fields in the submission process (see Section 3.6). For example, some institutions require an internal or external "pre-
review" of the manuscript for scholarly, statistical, or policy aspects prior to journal submission, and it would be helpful
for the Editor to know this and, if appropriate, the names of the reviewers. Also, some authors send their papers
through an in-house or professional editing service prior to submission, and mention of this would also be
appropriate. Finally, if the submission is part of a larger research project or builds upon research that has already
been published, please mention this work (including citations) and explain how your submission to this journal differs
from it. Note that all new submissions are screened for plagiarism with iThenticate software, and an explanation could help
the Editor understand the unique contribution of the submission when compared alongside similarly worded
texts.

For revised submissions, authors must provide a cover letter addressed to the assigned editor explaining in general
terms how they have addressed the reviewer comments. This letter is a different file than the Detailed Response to
Reviewers (see below). It is not given to the reviewers and can be used by the author to explain any disagreement
they may have with reviewer recommendations, how they resolved conflicting recommendations between reviewers,
and so on.

3.9.2. Complete Title Page (required for all submissions) - Following the format guidelines above, create a title
page with the following components:

Full title
All author names in order of authorship, with surnames (family names) in all CAPITAL letters. Affiliation and e-mail information for each author.

Full contact information for corresponding author, including full postal address, phone number (with country code), and e-mail address.

3.9.3. Detailed Response to Reviewers (required for revised submissions only) - Following the general formatting guidelines above, create a detailed response to reviewers using the editor and reviewer comments you received in your decision letter and (if any) those downloaded, from your account in EES. The information in this file will likely be shared with the reviewers, therefore it should not include any self-referencing, logos, headers or other identifying information.

There are no mandatory procedures for how authors should prepare their Detailed Response to Reviewers, and the editors see many creative uses of tables, text highlighted in color, and other ways that address reviewer concerns. But it is usually beneficial to the author to err on the side of being too detailed and comprehensive rather than brief or vague, and it is always a good idea to maintain politeness and respect for the authority of the reviewer, even if you disagree with them on a point.

In structuring your response, it is usually the most helpful if authors summarize or copy and paste each major reviewer comment then respond to it. You should do so separately for each of the reviewers, and if more than one reviewer has the same comment, it is fine to simply repeat the same response (some reviewers are only concerned about the issues they raise and will not look at the other review comments and your responses). If it is a substantive comment, authors will sometimes copy and paste the sentence/paragraph from their revised paper into their response, or summarize their change then refer to the specific line numbers in the revised paper where the reviewers can find it. For minor changes such as terminology, types, new citations, etc., it is usually sufficient to reply "Done" or "Change made."

3.9.4. Highlights (required for all research paper submissions) - Follow the general formatting guidelines above to create your research highlights document. Highlights are important in communicating the main findings and implications of your research and will appear in article summaries in ScienceDirect and the front page of published articles, alongside the abstract, keywords, and optional graphical abstract. Make sure that the highlights are written in a series of 3-5 bullet points (maximum 85 characters, including spaces, per bullet point). Each bullet point should contain brief sentences or phrases that describe the key findings and/or implications from the research, not the goals or methods. Highlights should complement the abstract, not duplicate it. See http://www.elsevier.com/highlights for examples.

3.9.5. Manuscript (required for all submissions) - This file should only include the body, references, and tables of your submission. Please do not include the abstract, keywords, acknowledgments, or figures in this file, and do not embed tables within the main body of the manuscript.

Manuscript formatting - In addition to the general formatting guidelines listed above, there are several specific requirements for the manuscript file. Please use double-spacing and ensure that each new paragraph is clearly indicated by a tab or blank line. Use continuous line numbering in the body of your manuscript only. Turn off line numbering for References, Table captions, Tables, and Figure captions; these sections may be single-spaced, and should begin on a new page. Your manuscript should be ordered as indicated in the list below; anything not listed here should be separately uploaded:

- Body of manuscript (without title, authors, abstract, or keywords)
- Numbered list of references (see below for guidelines)
- List of tables (list captions of all tables)
- Individual tables (with captions; new page for each table)
- List of figures (list captions of all figures; figures to be uploaded separately)
- List of appendices (list the titles of all appendices)
- Individually lettered (A, B, C) appendices (with titles; new page for each table; figure appendices to be uploaded separately)

Length - Please refer to the word count guidelines in Section 2 (Article Types) above.

Manuscript structure and content - Except for short Perspective Essays and Comments, authors should include distinct sections in the manuscript using this numerical structure with up to three levels of subheadings: 1, 1.1, 1.1.1, 2, etc. Most manuscripts should follow a standard structure and content for research reporting:

- Introduction - Describe the nature and context of the research problem, its significance and novelty, and how addressing it will contribute to the advancement of science and practice in your topic of investigation. Provide an informative, concise review of the principal literatures related to your topic, addressing the current state of knowledge and gaps in knowledge. Demonstrate your command of literature with reference to key classic and recent sources, emphasizing peer reviewed, international research journals and books. Whether your work is descriptive or aimed at testing hypotheses, your introduction should adequately frame the problem and specify the questions or objectives addressed by the research.

http://www.elsevier.com/journals/landscape-and-urban-planning/0169-2046/guide-for-auth... 3/25/2013
Methods - If your research has a geographical focus, describe the nature of the landscape setting with regard to location, scale, and other essential information. Indicate a map and contextual photo as appropriate. Provide sufficient detail of your approach so that readers can evaluate the credibility and rigor of your work with respect to research design, sampling and data collection, statistical power and precision, statistical analyses, and other procedures. Except for common statistical tests and procedures, steps in your approach that have precedence in the research literature should be sufficiently referenced.

Results - Describe your findings in a clear and concise manner, making effective and economical use of tables and figures. Non-essential data should be moved to Appendices or provided as online Supplementary Material. Provide enough interpretation of statistical tests and other analyses so that the main points can be understood by a broad, multidisciplinary audience of interested researchers and practitioners.

Discussion - Reflect upon the meaning of your findings, by themselves and in relation to other international research. Summarize how your findings might apply to other places and situations without overgeneralizing. Discuss the strengths and weaknesses of the work and how it might be improved or extended in future research. Discuss the implications that your work has for landscape design, planning, management, and/or policy as appropriate.

Conclusions - Summarize the main points of your paper, highlighting key findings and implications that you want people to remember about your work.

Writing style - Although writing a clear and familiar manuscript structure will help organize your research, your writing style must also be clear and concise to effectively communicate. Avoid long, complicated sentences and paragraphs, and minimize redundancy in wording and broader statements. To reach a broad, multidisciplinary audience of international scholars and practitioners, simplify your explanation of methods and results to the extent possible, minimize technical jargon and use of abbreviations, and avoid colloquial expressions. Write directly in first or third person, maintain consistency in tense within sections, and use parallel construction in all tenses of your manuscript (sentence, paragraph, section) to help build a logical, easy-to-follow structure. Carefully proofread to correct any typographical errors, and edit and re-edit to achieve smoothness, precision, and economy of expression. Having a clear structure and writing style does not mean your manuscript need be dry or boring. As both a goal to aspire to and a guide to get there, think of your writing as story-telling. By telling the story about your work in an engaging and meaningful way, you will be better able to capture the attention of the reader and share the important knowledge you have gained through your disciplined study of the landscape.

Language editing - If writing well in English as either a first or second language is a challenge to you, we strongly encourage you to use a language editing service or seek help from a colleague with excellent writing skills. Do this before submitting your manuscript rather than waiting until the time for revision, as poorly written submissions could be rejected by the editors outright or upon recommendation by the reviewers. Even if your paper is accepted for publication, do not expect the publisher to do any extensive copyediting of your paper. Good writing is your responsibility upfront, and if parts of your paper remain long-winded, awkwardly phrased, or confusing upon acceptance, they will remain that way for posterity if you do wish to use a professional language editing service, check first with your institution as they may already provide one for employees free of charge or at reduced prices. Otherwise, many commercial services are available, including Elsevier: http://www.elsevier.com/linguageediting. Please contact our staff if you have concerns regarding language or editing services.

Anonymity and self-referencing - Landscape and Urban Planning uses a double-blind review process, and to ensure anonymity the manuscript file must not include any self-referencing, logos, headers or any other type of information or formatting that might reveal the identity or affiliation of any of the authors. Acknowledgements should not be included in the manuscript file and must be uploaded as a separate file. See Section 3.9.7 below. Self-referencing that must be included must not be obvious in revealing any authors' identity and should refer to the authors' work only indirectly (e.g., "This work builds upon procedures developed by Smith (2010)]; NOT "I build upon my previous work (Smith, 2010).""). To further ensure anonymity, authors may choose to temporarily remove self-citations from the reference list and mask in-text references (e.g., "[XXX, 2009 masked for blind review]"); then restore the proper citation when the manuscript is accepted. Although such an approach better respects the integrity of the blind review process, authors must weigh the removal of a citation against the need for reviewers to evaluate the credibility of your work.

Footnotes - Footnotes should not be used. Incorporate your footnoted material into the main text or delete it if not essential.

Nomenclature and units - Follow internationally accepted rules and conventions - use the international system of units (SI). If other units give clearer meaning to your work (e.g., land ownership parcelization trends moving from 40 to 10 acres) give their equivalent in SI in parentheses.

Statistical and mathematical copy and equations - Follow APA 6th ed. guidelines.

References - (See examples below) Be sure to include all references cited in the text. All new publications should be arranged first alphabetically and, if necessary, further sorted chronologically. More than one reference from the same author(s) in the same year should be identified by the letters "a", "b", "c", etc., placed after the year of publication. Special cases include:

- Digital object identifier (DOI) - The digital object identifier (DOI) provides a persistent link to electronically available journal articles and some other sources. It should be included at the end of a reference when available (see example below).

"http://www.elsevier.com/journals/landscape-and-urban-planning/0169-2046/guide-for-authors... 3/25/2013"
Uniform resource locators (URL) - References to published and unpublished documents, websites, and other sources that are primarily accessed through the Internet should include the URL after providing regular citation information in as complete a form as possible (see examples below). Include the retrieval date only if the source material linked to the URL changes over time.

Accepted and in press publications - References to sources that have been recently accepted for publication or are already in press should be cited using as complete information as possible, including volume/issue numbers and DOI/URL's. Authors should make every attempt to update such references as papers move through revision to acceptance and page proofs.

Work in preparation, submitted, under review, etc. - Work destined for publication that has not yet been officially accepted should not be cited.

Unpublished and non-refereed works - References to unpublished and/or non-refereed sources such as unpublished data, newspaper and popular magazine articles, websites, and other "gray literature" should be used sparingly and not to support claims made in the paper. Exceptions to this include unpublished theses and dissertations.

Personal communications - Interviews, private e-mails and letters, and other personal communications are not considered recoverable data and thus should not be included in your reference list. If included in your work, they should be referenced within the text by name and date of the communication, e.g. - A. Smith (personal communication, January 10, 2012), (A. Smith, personal communication, January 10, 2012).

Non-English references - Non-English references should be used sparingly and in cases where the source provides essential support to your work and more widely accessible English language sources cannot substitute. Provide an English translation after the original title (see example 6 below)

Basic reference list examples -

Basic in-text reference examples -

Authors cited outside and within parentheses - "We used the Cuzick and Edwards (1990) test..." summated across all cases (Cuzick & Edwards, 1990).*

Multiple works in some parentheses - "...urban areas tended to have less diverse assemblages of bird species than adjacent natural areas (Belisario & Osborne, 1962; Cam; Nichols, Sauer, Hines, & Flather, 2000; Gavarni, 1976)."

Multiple authors, 2nd occurrence - "...responses to habitat features were scale dependent (Bolger, Scott, & Rotenberg, 1997; Cam et al., 2000)."

Tables and non-figure appendices - Use single spacing; landscape orientation and text size smaller than 12-point type is allowable to fit larger tables on a page. Otherwise, follow APA 6th ed. style guidelines.

3.9.6. Figure Files (optional) - Each figure file should be uploaded separately in the order listed in the manuscript file and numbered accordingly. Ensure each figure is clearly understandable, properly labeled with a key of symbols or
other critical information, and is neatly and attractively presented. Keep in mind that most readers will access a copy of your work electronically and color figures, electronically published free of charge, may improve the readability and visual appeal of your work. But also note that if you have your color figures print-published in grayscale to avoid color print charges, the levels of shading that appear on maps or other images must be discernible and meaningful to readers in grayscale. At the time of acceptance of your paper, the publisher will contact you about these considerations as well as submitting high resolution files for optimal reproduction. For more details on artwork, see: http://www.elsevier.com/wps/find/authors_authorinstructions.

3.5.7. Acknowledgments (optional) - Please follow the general formatting guidelines for this file. Note that this is a separate file and no acknowledgments should be mentioned in the manuscript file. Reviewers will not have access to this file. Acknowledgments should be limited to information on grants and other institutional support received, and assistance from people who contributed to the study or helped in development and revision of the paper but are not authors. If warranted, mention of anonymous peer reviewers may be added at the time of paper acceptance. Appropriate ethics and other approvals obtained for the research can be included in this document.

3.5.8. Short Author Biographies (optional) - Please follow the general formatting guidelines for this document. Biographies are typically 2-6 sentences in length and include your full name, title and affiliation, and current research interests. Major recent achievements (awards, recent book publication) and secondary positions and assignments (e.g., board memberships) are also appropriate, as are notable career achievements (number of papers published). If this section is included, a biography should be provided for each author. Try to make each author biography roughly equivalent in the length, type, and order of information presented, though it is recognized that established researchers will have more to include than students and new researchers. In cases where there are several authors on a paper, a joint biography summarizing work by minor authors from the same institution or members of a particular research lab may be provided in lieu of separate biographies.

3.5.9. Graphical Abstract (optional) - A Graphical Abstract is a specially created figure that captures some key conceptual, methodological, results- or implications-oriented aspect of your research in pictorial form. It should be attractively designed to communicate to a wide readership and will appear alongside your research highlights both online in ScienceDirect and on the front page of your published article above the written abstract. For files types, sizes, and examples, see http://www.elsevier.com/graphicalabstracts.

3.5.10. KML files for Google Maps visualizations (optional) - KML (Keyhole Markup Language) is an XML schema for expressing and visualizing geographic attributes using Internet-based Earth browsers such as Google Maps. Elsevier will generate Google Maps from your KML files and include these in the online version of your published article. Submitted KML files also will be available for downloading from your online article on ScienceDirect. For more information see http://www.elsevier.com/googlemaps.

3.5.11. Embedded Audio and Video Files (optional) - Authors who have work that is best presented through audio and/or video formats may include files for placement within the body of the manuscript, as a video abstract, or as supplementary online electronic material (see next section). Included files are referenced the same as ordinary figures and but may need to be given more descriptive captions because only a representative photograph or video still ("thumbnail") frame will appear in the print version of the article. See http://www.elsevier.com/artworkinstructions

3.5.12. Supplementary Material for Online-only Publication (optional) - Supplementary files provide the author with options to include material supporting the principal methods and findings of their research, including large tables that would not ordinarily be published within a paper or paper appendix, datasets for archival and public access, presentation slides for educational use, demonstration videos, executable programs and more. Supplementary files will be published online alongside the electronic version of your article in Elsevier web products, including ScienceDirect. In order to ensure that your submitted material is directly usable, please ensure that data is provided in one of our recommended file formats. For ease of download, the recommended upper limit for the size of a single file is 10 MB. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file.

4. Manuscript Review Process

You will receive a confirmation by e-mail when the editorial office has received your submission. An editorial assistant will conduct an initial screening of your submission, including a plagiarism check and reference check, and will classify the submission by content for further "desk" review. A co-editor and/or associate editor will determine if your paper falls within the scope of the journal, meets the ethical requirements, and meets minimum technical and scholarly standards to be sent on for independent peer-review. Any manuscript not meeting these standards will be desk rejected by the editor and a decision letter will be sent to the corresponding author.

Submissions that pass the desk review then undergo a technical check, where authors may be asked to provide additional information or amend the submission. After passing the technical review, the submission is officially assigned to a handling editor (co-editor or associate editor), at which point you will receive an e-mail confirmation. Your paper will then be sent out to appropriate peer reviewers (usually three). Once reviewers are invited and agree to review, they have six weeks to complete and submit their review. Keep in mind that this may be a lengthy process since it involves finding reviewers, inviting reviewers and awaiting responses, inviting more reviewers if initial reviewers are not available, and awaiting the reviews to be submitted. Our editorial staff attempts to make this process as efficient as possible.

After all of the reviews are submitted, your handling editor will make a decision regarding the acceptance, rejection, or revision of the submission. It is highly unlikely that your paper will be accepted at this point. Revisions may be minor or major. You will receive a detailed decision letter from your editor, which will include comments from each reviewer and specific instructions regarding the submission of your revision (if appropriate). See Section 3.9.2. for preparing a Detailed Response to Reviewers.

Authors are advised to visit their accounts regularly to check on the status of their manuscript. If at any point you would like to communicate with the editorial staff, you may send an e-mail through the action items on the left column of your submission menu.

5. Manuscript Publication Process

The happy outcome of a successful review process is the acceptance of your paper for publication in Landscape and
Urban Planning. These papers are transmitted by the handling editor to the publisher, who will proof-read it for errors, correct any improperly formatted tables and references, and do design layout and typesetting. The publisher may contact you with questions regarding changes and updates, ask you about color figure reproduction, request that you submit higher resolution graphics files, and guide you through any last steps toward publication.

5.1. Proofs
Upon completion of typesetting, the corresponding author will receive a PDF file by email containing the page proofs of your manuscript. A form with queries from the copyeditor may also accompany your proofs. Please answer all queries and make any corrections or additions as requested. Page proofs should be checked closely for errors in typesetting and layout. Except for the correction of errors, no further editing changes in the page proofs will be allowed at this stage. If you share the proofs with fellow authors to help check for errors, the corresponding author should compile all corrections and respond to the publisher in one communication. Only one set of corrections will be accepted. Please return corrections within 2 days of receipt of the proofs. Should there be no corrections, please confirm this. The publisher reserves the right to proceed with publication if corrections are not communicated.

5.2. Copyright Transfer and Permissions
Along with proofs, the corresponding author will also receive a copyright transfer form and be asked to sign a “Journal Publishing Agreement” (see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the widest possible dissemination of information. If figures or excerpts from other copyrighted works are included, the corresponding author must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases - permissions@elsevier.com. Requests may also be completed online via the Elsevier homepage (http://www.elsevier.com/permissions).

5.2. Tracking your Article
Authors can track the progress of their accepted article and set up e-mail alerts informing them of changes to their manuscript’s status by using the “Track a Paper” at http://www.elsevier.com/tracker.

5.3. Author’s copy and offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. Additional paper offprints can be ordered by the authors. An order form with prices will be sent to the corresponding author.

5.4. Access Solutions
Elsevier offers a range of options for making an author’s research published in Landscape and Urban Planning accessible for use by students, scholars, practitioners, and others.

The journal’s website (http://www.journals.elsevier.com/landscape-and-urban-planning) provides open access to a selection of Editor’s Choice articles and a convenient compilation of titles and abstracts of recent, highly cited, and highly downloaded papers.

The journal’s head page in ScienceDirect (http://www.sciencedirect.com/journal/0169-2046) offers free access to abstracts, highlights, and article outlines for all articles published (1974–present), with simple and advanced search capabilities.

Authors may voluntarily post their accepted manuscripts to their personal or institutional websites for scholarly use only. See http://www.elsevier.com/wps/find/authorsview.author/postingpolicy.

Beyond this, published journal articles may be made available by the author or the author’s institution for broader commercial and systematic distribution through sponsored access arrangements - http://www.elsevier.com/wps/find/authorsview.author-sponsoredarticles.

If an author is required to post articles by a funder or employer, then Elsevier requires an agreement in advance with that organization to ensure that manuscript posting policies do not undermine the sustainability of the journal, and the manuscripts are made available after journal-specific embargo periods and with DOI links back to the published journal article. For further information see - http://www.elsevier.com/wps/find/authorsview.author/fundingagreements.

Certain repositories such as PubMed Central (PMC) are authorized under special arrangement with Elsevier to process and post certain articles such as those funded by the National Institutes of Health (NIH) under its Public Access policy. Articles accepted for publication in an Elsevier journal from authors who have indicated that the underlying research reported in their articles was supported by an NIH grant will be sent by Elsevier to PMC for public access posting 12 months after final publication. The version of the article provided by Elsevier will include peer-review comments incorporated by the author into the article. Because the NIH Public Access policy is voluntary, authors may elect not to deposit such articles in PMC. If you wish to opt out and not deposit to PMC, you may indicate this by sending an e-mail to NIHauthorquest@elsevier.com.